четвер, 18 лютого 2016 р.

Ділення раціональних чисел


Урок математики у 6 класі
Додати заголовок


Тема. Ділення раціональних чисел
Мета. Сформувати в учнів навички виконання ділення над раціональними числами,  обчислення значень виразів, що містять раціональні числа з використанням чотирьох арифметичних дій; розвивати позитивні риси особистості; виховувати почуття патріотизму, відповідальності за доручену справу.
Тип уроку: комбінований.
Хід уроку
Розум полягає не лише в знаннях, але
 й у вмінні застосовувати ці знання.
Аристотель
І. Організаційний момент
Повідомлення теми, очікуваних результатів
Продовжуючи вивчати тему «Ділення раціональних чисел», проведемо цей урок у формі подорожі. На нас чекають цікаві зупинки. Хочу зауважити, що в роботі нам допоможе вислів давньогрецького філософа і вченого Аристотеля «Розум полягає не лише в знаннях, але й у вмінні застосовувати ці знання». Вам надається можливість застосувати свої знання і вміння.
Ми здійснимо гру-подорож на козацькій чайці за маршрутом: Дніпро, Чорне море, Босфорська протока, потім – Середземне море, Гібралтарська протока, а далі, перетнувши Атлантику, дійдемо до берегів Північної Америки.
Історикознавець. Зародком нової української державності – козацької – стала  Запорізька Січ. Її демократичний характер пояснюється тим, що Запорізьку Січ створив сам народ для подолання загрози знищення; козакам були потрібні злагода й порозуміння.
Образ запорізького козака став символом захисника Батьківщини. Козацтво захищало українські землі від руйнівних набігів турецько-татарських загарбників, повернуло до життя спустошені татарськими ордами південноукраїнські землі. Запорізькі козаки піднялися у військовій справі до рівня кращих європейських армій XVII-XVIII ст.
Досконало володіли мистецтвом морського бою. Їхній флот складався із чайок легких маневрених човнів, які мали два керма (кормове і носове), рухалися як на веслах, так і з допомогою вітрила. Чайки вміщували 50-70 козаків, озброєних рушницями і шаблями та невеликими гарматами
Саме в козаках український народ бачив своїх найбільш надійних захисників. От що писав мандрівний поет XVII сторіччя Климентій Зинов’єв:
...Козаків, немов святих, треба шанувати.
Позаяк і кров свою в битвах проливають.
Тим з небес подай свою, Господи, корону,
Хто для нашої землі лагодить оборону.

ІІ. Актуалізація опорних знань
І етап «Старт»
На цьому етапі потрібно привести екіпіровку чайки в повний порядок: розкласти все по своїх місцях, щоб нічого не заважало в подорожі. Для цього потрібно дати відповіді на запитання.
1.     Назвати компоненти дії віднімання.
2.     Як помножити два раціональних числа з різними знаками?
3.     Компоненти дії ділення.
4.     Як додати два числа з однаковими знаками?
5.     Як поділити два числа з однаковими знаками?
6.     Що таке модуль числа?
7.     Переставна властивість множення.
8.     Як відняти два раціональних числа?
9.     Як додати два числа з різними знаками?
10.  Розподільна властивість множення.
ІІІ. Відпрацювання навичок
ІІ етап «Маршрут руху»
Ми успішно подолали першу частину шляху – Дніпро і вийшли у Чорне море. Ми правильно склали маршрут, рухались правильним курсом, але шторм збив нас з курсу. Щоб зорієнтуватися в просторі, нам треба розв’язати завдання, за правильними відповідями відшукати слово, яке вкаже на курс нашої подорожі.

                                             3)
4)                    5)           6) .
Б
А
О
Р
Д
М
Ф
Е
С
У
К
2
9
– 2
– 9
– 3
3
– 6
6
12

Ми правильно відгадали: наш курс – Босфор.
Історикознавець. Босфор – протока між Європою та Малою Азією, з'єднуюча Чорне море з Мармуровим і разом з Дарданелами – з Середземним. За легендою свою назву протока отримала завдяки Іо. Щоб уникнути гніву своєї дружини Гери, Зевс перетворив свою прекрасну кохану на ім’я Іо у білу корову. Нещасна Іо обрала водний шлях порятунку, пірнувши у синій вир протоки, що з тих пір так і називається «коров'ячим бродом» або Босфором. З обох боків протоки розташоване історичне місто Константинополь, сьогоднішній Стамбул. Стамбул розташований одразу в двох частинах світу — Європі та Азії — і немов з’єднує їх у вічному поцілунку. Багаторазово змінював своє ім’я, кожне з яких знаменує яскраві періоди світової історії, – Візантія, Новий Рим, Константинополь, Стамбул, Царгород.





ІІІ етап «Поповнення запасів їжі і питної води»
Робота з сигнальними картками:







А
 

Б
 



В
 

 




                              


Тестові завдання (учні підіймають картку з правильною, на їх думку, відповіддю).
Обчислити:
12 : ( – 3)
А: 4             Б: – 4          В: 9
– 24 : (– 6)
А: 4             Б: – 4          В: – 30
0 : (– 8,7)
А: 8,7          Б: – 8,7       В: 0
(–1)100
А: – 100      Б: – 1          В: 1
(–1)121
А: 1             Б: – 1          В: – 121
А: – 7700              Б: 1100        В: 7700
А: 8             Б: 16           В: – 16
ІV етап «Пірати»
         І знову ми в дорозі. Ми пливемо Середземним морем. Що ж це? На нас накинулися пірати. Щоб врятуватися від піратів, вам необхідно розв’язати вправи №1146(1,2).
1) ;

2) ;
1)
2)
3)
4)
Четверо учнів виконують завдання на картках-корабликах.

V етап «Гібралтар»
Історикознавець. Гібралтар, територія на півдні Піренейського півострова, біля Гібралтарської протоки включає в себе скелястий півострів (висотою до 425м.) і піщаний перешийок, що з'єднує скелю з Піренейським півостровом. Гібралтар був відомий ще стародавнім грекам і римлянам під назвою Кальпе. У 8 ст. перетворений арабами у фортецю, що була названа Джебель-ат-Тарік (гора Таріка) на честь арабського завойовника Таріка ібн Сеїда. Пізніше ця назва була перекручена, і фортеця стала називатися Гібралтар.
Щоб пропливти протоку, треба пройти випробування.
Розв’язати №1142(1,3)
1)                                                  2)
                                                              
                                                                          

І ось, нарешті на горизонті з’явився маяк, вогник якого ледь-ледь світить у далечині. Додаткове завдання №1141.  
1)                                                 2)
                                                            
                                                      
ІV. Підсумки уроку та пояснення домашнього завдання.
Ось і закінчилася наша подорож. І закінчувати урок вже настала пора. Сьогодні ви не витрачали час, тому є кандидати для нагород у нас(Оцінювання учнів).

V. Домашнє завдання                                     .

пʼятниця, 11 грудня 2015 р.

Конкурс " Вчитель року"


Конкурс " Вчитель року"
      І  етап конкурсу проходив на базі Новоукраїнської школи № 6. Проводила урок у 7 класі з алгебри на тему "Розкладання на множники способом групування". Від свого уроку не дуже задоволена, але про клас склаливя гарні враження, Діти перед уроком просили допогати і допомагали веь урок. Я думаю, що клас дружний, поважає старших. Від учнів та працівників я в захваті. 

понеділок, 7 грудня 2015 р.

Урок 8 клас: Розвязування прямокутних прямокутників

Тема уроку. Розв’язування прямокутних трикутників
Мета уроку. Узагальнення, систематизація та закріплення знань про теорему Піфагора, розв’язування прямокутних трикутників; застосування набутих знань і вмінь у практичній діяльності.
Розвиток вмінь аналізувати, робити висновки, знаходити власні способи розв’язання.
Формування компетентностей: соціальних (розвиток пізнавальної активності учнів, робота в команді, усвідомлення власного внеску в спільну роботу, вміння брати відповідальність), комунікативних (формування власної точки зору, розвиток культури мовлення, вміння доводити власну позицію). Виховування активності, уваги, кмітливісті, самостійністі.
Прищеплення інтересу до математики.

Тип уроку. Урок узагальнення і систематизації знань

                     Світ, що нас оточує, - це світ геометрії.                                                     Т                   Тож давайте його пізнавати!
                                                                Піфагор

І. Організаційна частина
ІІ. Повідомлення теми і мети уроку
Сьогодні ми проведемо підсумковий урок з теми „ Розв’язування прямокутних трикутників ”.
ІІІ. Актуалізація опорних знань
Повторимо матеріал, вивчений на уроках. Проведемо гру. (діти поділені на групи за їх бажанням) Наша гра математична.
Можливо, сьогодні, ви щось дізнаєтесь і нове.
Знайомтеся з капітанами груп:        1.
                                                            2.
                                                            3.
                                                            4.
Щоб провести І конкурс, необхідно з’ясувати, кому першому обирати тему.
Гравцям необхідно дати відповідь на одне запитання. Хто дасть точнішу відповідь, той завдання обирає першим.
Отже:  1.В якому році Піфагор був олімпійським чемпіоном?   (548 р. до н.е.), або
 2. Скільки століть минуло з життя Піфагора?”         ( 27 століть)
 (гравці записують відповідь на аркушах і одночасно показують)
Отже, у наступному конкурсі першим тему буде обирати __________________ , другим ___________________,
третім ______________________, четвертим _____________________
Пропонуємо такі теми: „Піфагор і його теорема”, „Співвідношення між сторонами і кутами ”,  „Історія математики”, „Сюрприз”, „Розв’язування трикутників”
Піфагор і його теорема
1 В якому столітті жив Піфагор?            (VІ ст. до н.е.)         .
2. Ім’я якого відомого математика складається з трьох складів: перший склад – число, другий – нота, третій – одне з імен давньоєгипетського бога Сонця?                          (Пі-фа-гор)
3. Як інакше називають єгипетський трикутник?             (Піфагоровим)
4. З якого виду спорту Піфагор був олімпійським чемпіоном?     (з кулачного бою на олімпіаді в 548 р. до н.е.)
5. Який нещасний випадок стався на цій олімпіаді в 548 р. до н.е.?    (спостерігаючи за боєм на трибуні помер відомий математик Фалес)
6. Що ви знаєте про числа 5, 6, 7, 8, 9, 13, 17?       (Піфагорійці вважали, що 5 символізує колір, 6- холод, 7 – розум, здоров’я та світло, 8 – кохання та дружбу, 9 – постійність, 13 і 17 – ненависні числа)
7. Що ви можете сказати про множину ірраціональних чисел?   (цей вид чисел відкрив Піфагор, шукаючи діагональ квадрата зі стороною 1)
8. Скільки століть минуло з життя Піфагора?          (27)
9. Що ви знаєте про Піфагорові числа?           (це трійки чисел, що задовольняють рівняння а222 , де а, в, с – взаємно прості: 3,4,5;  5,12,13; 8,15,17 і т. д.)
10. Які математичні твердження належать Піфагору?        (Суми послідовних непарних чисел, починаючи з одиниці, є точними квадратами. Всяке непарне число є різницею квадратів)

Співвідношення між сторонами і кутами
1.Косинусом гострого кута прямокутного трикутника називається ...
2.Тангенсом гострого кута прямокутного трикутника називається ...
3.Синусом гострого кута прямокутного трикутника називається ...
4.Котангенсом гострого кута прямокутного трикутника називається ...
5.Як змінюється синус і тангенс при зростанні гострого кута?
6.Сторона, прилегла до прямого кута прямокутного трикутника...
 7.Відрізок прямої, перпендикулярної до даної прямої, який має одним із своїх   кінців точку перетину прямих...
8.Відношення протилежного катета до прилеглого у прямокутному трикутнику...
 9.Відношення прилеглого катета до протилежного у прямокутному трикутнику...
10.Відношення прилеглого катета до гіпотенузи у прямокутному трикутнику...
                                             
Сюрприз
1.     Трикутник, що має прямий кут…
2.     Ромб, у якого всі кути рівні…
3.     Трикутник, у якого дві сторони рівні…
4.     Відрізок, що сполучає середини бічних сторін трапеції…
5.     Твердження, що  потребує доведення…
6.     Промінь, який виходить з вершини кута і ділить його навпіл…
7.     Прямокутник, у якого всі сторони рівні…
8.     Відрізок, що сполучає дві точки на колі…
9.     Прямі, які не перетинаються…
10.                       Прямі, які перетинаються під прямим кутом…

Розв’язування прямокутних трикутників
1.     Катет, протилежний куту α, дорівнює...
2.     Гіпотенуза дорівнює...
3.     Перпендикуляр опущений з вершини трикутника на протилежну сторону називається...
4.     Трикутник зі сторонами 3, 4, 5...
5.     Катет прямокутного трикутника є середнім пропорційним між ...
6.     Катет, прилеглий до кута α, дорівнює...
7.     Сторона прямокутного трикутника, що лежить проти прямого кута...
8.     Сума гострих кутів прямокутного трикутника...
9.     Катет прямокутного трикутника, протилежний гострому куту в 30о  ...
10.                       Висота прямокутного трикутника є середнім пропорційним між...
                                   
Історія математики
1. Ім’ям якого вченого називається геометрія, що вивчається в школі?  (Евкліда)
2. Чиїм іменем названа теорема, яка допомагає розв’язувати прямокутні трикутники?  (Піфагора)
3. У Росії у 1703 році вийшли підручник арифметики. Назвіть автора цього підручника.   (Магницький)
4. Назвіть ім’я жінки, учениці Піфагора       (Теано)
5. Кого із вчених називають „королем математики”?          (Гауса)
6. Ім’ям якого вченого названі координати х і у на площині?  (Рене Декарт)
7. Кого із вчених називають „батьком алгебри”?           (Вієта)
8. Назвіть вченого, який довів ознаки рівності трикутників, теорему про пропорційний поділ.   (Фалес)
9. Хто перший запропонував нумерацію крісел за рядами і місцями?   (Рене Декарт)
10. Назвіть першу російську жінку-математика.   (С. Ковалевська)


ІІ. Переходимо до ІІ конкурсу – конкурсу ораторів.
За одну хвилину довести справедливість твердження „Теорема Піфагора – одна з основних теорем геометрії”
( виступи учнів)
Підведення підсумку. (слово учителя) Теорема Піфагора має велике значення: вона використовується на кожному кроці, той факт, що існує близько 500 різних доказів цієї теореми доводить велику кількість її реальних реалізацій. Відкриття теореми Піфагором оточене ореолом красивих легенд. Прокл, коментуючи останнє продовження першої книги “Начал” Евкліда, пише: “Якщо послухати тих, хто повторює давні легенди, то доводиться сказати, що ця теорема  походить від Піфагора; розповідають, що він у честь цього відкриття приніс у жертву бика”. Дехто розповідає, що він приніс у жертву не одного бика, а цілу сотню.

ІV. Використання знань на практиці
ІІІ. Переходимо до наступного конкурсу „Практикум” (групи одержують завдання і виконують)
 1. У прямокутному трикутнику катети відносяться як 12 до 5, а гіпотенуза 39см. Знайти катети.

2. Висоти двох вертикальних стовпів дорівнюють 5м і 12,5м. Відстань між ними 10м. Знайти найменшу довжину троса, яким можна з’єднати верхні кінці стовпів?

3. У трикутнику АВС висота ВD поділяє сторону АС на відрізки АD і DС.
ВC =6см, ∟А=30 о, ∟СВD=45 о. Знайдіть сторону АС трикутника.
            
4. З точки, що знаходиться на відстані 8см від прямої, проведено до неї дві
похилі, які утворюють з прямою кути  45 о і 60 о . Знайдіть відстань між
 основами похилих. Скільки розв’язків має задача?

 (Діти готують відповіді, доповідають про кількість зроблених задач)

ІV. Переходимо до наступного конкурсу ”Чи правильно що...”
Кожна  група відповідає на п’ять запитань, які починаються словами „Чи правильно що...”
Залишається відповісти: „так” чи „ні”
Запитання
1. Чи правильно, що теорема в перекладі з грецької мови означає ”вистава” ? (так)
2. Чи правильно, що катетом називали висоту прямокутного трикутника ? (так, в середні віка, інші сторони – гіпотенуза і основа)
3. Чи правильно, що cos 40 оsin 70 о ?           (так)
4. Чи правильно, що центр кола, описаного навколо прямокутного трикутника є серединою гіпотенузи?     (так)
5. Чи правильно, що   tg 90о не існує?                               (так)
6. Чи правильно, що Шарль Перро написав казку „Кохання циркуля і лінійки”? (так)
7. . Чи правильно, що sin 25о  <    cos 50 о ?       (так)
8. Чи правильно, що числа 3 і 5, 11 і 13, 17 і 19 називаються братами?   (ні, їх називають числами - близнюками)
9. Чи правильно, що знак „=” запропонував в 1557 році англійський математик Рекорд?      (так)
10. Чи правильно, що sin 75о  <    sin 50 о ?               (ні)
11. Чи правильно, що sin2В + cos2В = 1?    (так)
12. Чи правильно, що один лікоть - 75см?       (ні, один лікоть – це 46см)
     13. Чи правильно, що гіпотенуза в перекладі з грецької мови означає „натягнута”?  (так)
     14. Чи правильно, що  cos 40 о <   sin 50 о ?          (ні)
     15. Чи правильно, що за допомогою мотузок, довжиною 3, 4, 5 одиниць одержували прямі кути при побудові піраміди фараона Хеопса?   (ні)
     16. Чи правильно, що sin 60о = 0,5         (ні)
     17. Чи правильно, що cos 40 о < cos 20 о ?             (так)
     18. Чи правильно, що брати Грімм написали казку „Незвичайні пригоди трикутника”?   (ні)
     19. Чи правильно, що sin2В + cos2 А = 1?                     (ні)
     20. Чи правильно, що саме Пушкін написав” Натхнення потрібне в геометрії, як і в поезії”?       (так)

V.  Підведення підсумку уроку
1. Сьогодні ми проводимо останній урок з даної теми. Я хочу кожній групі запропонувати розгадати кросворд і знайти слово, з якого ми починали вивчення даної теми. (Роздати заготовлені кросворди)

           1. Назва прямокутного трикутника зі сторонами 3, 4, 5.
           2. Учений, ім’ям якого названа теорема про суму квадратів катетів прямокутного трикутника.
           3. Острів, на якому народився цей учений.
           4. Катет, який не лежить проти даного кута.
           5. Там Піфагор прожив 12 років.
           6. Сторона прямокутного трикутника, яка лежить проти прямого кута.
           7. Кількість биків, принесена Піфагором у жертву богам після доведення теореми.
1













2









3






4










5






6












7











2. Що нового на уроці ви дізнались?
3. Хотілося закінчити урок, згадавши вчення Піфагора, адже воно так нам необхідне в житті.
·        Твори велике, не обіцяючи великого
·        Нічому не дивуйся
·        Тимчасова невдача краща від тимчасової удачі
·        Не заплющуй очі, коли хочеш спати, не проаналізувавши своїх учинків за минулий день
·        Живи з людьми так, щоб твої друзі не стали недругами, а недруги стали друзями
·        Не роби нічого ганебного ні в присутності інших, ні таємно. Першим твоїм законом повинна бути повага до самого себе
·        Лише неблагородна людина здатна в очі хвалити, а поза очі злословити
·        Усе в світі підкоряється числам
VІ. Завдання додому

Повторити тему »Теорема Піфагора», підготуватись до контрольної роботи, довиконувати завдання з практикуму.